Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Virol ; 96(16): e0084122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924922

RESUMO

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Assuntos
Exorribonucleases , Aptidão Genética , Vírus da Hepatite Murina , Proteólise , RNA Viral , Proteínas não Estruturais Virais , Proteínas do Complexo da Replicase Viral , Animais , Exorribonucleases/genética , Exorribonucleases/metabolismo , Camundongos , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/fisiologia , Mutação , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Recombinação Genética , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
2.
mBio ; 12(4): e0178121, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372695

RESUMO

The 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses (CoVs) and rotaviruses encode 2-5A-degrading enzymes, thereby antagonizing RNase L and its antiviral effects. A-kinase-anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self-double-stranded RNAs that activate OAS. We show that these enzymes, members of the two-histidine phosphoesterase (2H-PE) superfamily, constitute a subfamily referred here as 2',5'-PEs. 2',5'-PEs from the mouse CoV mouse hepatitis virus (MHV) (NS2), Middle East respiratory syndrome coronavirus (MERS-CoV) (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3',5'-oligoribonucleotides, they all cleaved 2',5'-oligoadenylates efficiently but with variable activity against other 2',5'-oligonucleotides. The 2',5'-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2',5'-p3A3) producing mono- or diadenylates with 2',3'-cyclic phosphate termini. Our results suggest that the elimination of 2-5A might be the sole function of viral 2',5'-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L. IMPORTANCE Viruses often encode accessory proteins that antagonize the host antiviral immune response. Here, we probed the evolutionary relationships and biochemical activities of two-histidine phosphoesterases (2H-PEs) that allow some coronaviruses and rotaviruses to counteract antiviral innate immunity. In addition, we investigated the mammalian enzyme AKAP7, which has homology and shared activities with the viral enzymes and might reduce self-injury. These viral and host enzymes, which we refer to as 2',5'-PEs, specifically degrade 2',5'-oligoadenylate activators of the antiviral enzyme RNase L. We show that the host and viral enzymes are metal ion independent and exclusively cleave 2',5'- and not 3',5'-phosphodiester bonds, producing cleavage products with cyclic 2',3'-phosphate termini. Our study defines 2',5'-PEs as enzymes that share characteristic conserved features with the 2H-PE superfamily but have specific and distinct biochemical cleavage activities. These findings may eventually lead to pharmacological strategies for developing antiviral drugs against coronaviruses, rotaviruses, and other viruses.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Nucleotídeos de Adenina/metabolismo , Endorribonucleases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Vírus da Hepatite Murina/enzimologia , Oligorribonucleotídeos/metabolismo , Rotavirus/enzimologia , Animais , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Camundongos
3.
RNA ; 26(12): 1976-1999, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989044

RESUMO

Coronavirus EndoU inhibits dsRNA-activated antiviral responses; however, the physiologic RNA substrates of EndoU are unknown. In this study, we used mouse hepatitis virus (MHV)-infected bone marrow-derived macrophage (BMM) and cyclic phosphate cDNA sequencing to identify the RNA targets of EndoU. EndoU targeted viral RNA, cleaving the 3' side of pyrimidines with a strong preference for U ↓ A and C ↓ A sequences (endoY ↓ A). EndoU-dependent cleavage was detected in every region of MHV RNA, from the 5' NTR to the 3' NTR, including transcriptional regulatory sequences (TRS). Cleavage at two CA dinucleotides immediately adjacent to the MHV poly(A) tail suggests a mechanism to suppress negative-strand RNA synthesis and the accumulation of viral dsRNA. MHV with EndoU (EndoUmut) or 2'-5' phosphodiesterase (PDEmut) mutations provoked the activation of RNase L in BMM, with corresponding cleavage of RNAs by RNase L. The physiologic targets of EndoU are viral RNA templates required for negative-strand RNA synthesis and dsRNA accumulation. Coronavirus EndoU cleaves U ↓ A and C ↓ A sequences (endoY ↓ A) within viral (+) strand RNA to evade dsRNA-activated host responses.


Assuntos
Vírus da Hepatite Murina/enzimologia , RNA/química , Endorribonucleases Específicas de Uridilato/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Células Cultivadas , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Motivos de Nucleotídeos , Ligação Proteica , RNA/metabolismo , Endorribonucleases Específicas de Uridilato/genética , Proteínas não Estruturais Virais/genética
4.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046453

RESUMO

Coronaviruses (CoVs) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that counteract the host innate immune response to facilitate efficient viral replication. CoV nonstructural protein 14 (nsp14) encodes 3'-to-5' exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order Nidovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade double-stranded RNA (dsRNA) replication intermediates. In this study, we tested the hypothesis that CoV ExoN also functions to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-ß) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor-deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-ß gene expression, and in the presence of an IFN-ß-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to those of untreated samples. However, ExoN(-) virus generated from IFN-ß-pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest murine hepatitis virus (MHV) ExoN activity is required for resistance to the innate immune response, and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity.IMPORTANCE CoVs encode multiple antagonists that prevent or disrupt an efficient innate immune response. Additionally, no specific antiviral therapies or vaccines currently exist for human CoV infections. Therefore, the study of CoV innate immune antagonists is essential for understanding how CoVs overcome host defenses and to maximize potential therapeutic interventions. Here, we sought to determine the contributions of nsp14 ExoN activity in the induction of and resistance to the innate immune response. We show that viruses lacking nsp14 ExoN activity are more sensitive than wild-type MHV to restriction by exogenous IFN-ß and that viruses produced in the presence of an antiviral state are less capable of establishing a subsequent viral infection. Our results support the hypothesis that murine hepatitis virus ExoN activity is required for resistance to the innate immune response.


Assuntos
Exorribonucleases/genética , Exorribonucleases/metabolismo , Imunidade Inata , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , Genoma Viral , Interferon beta/farmacologia , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/genética , Mutagênese , Mutação , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Replicação Viral/efeitos dos fármacos
5.
J Mol Biol ; 429(11): 1661-1683, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28438633

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) encode multifunctional papain-like proteases (PLPs) that have the ability to process the viral polyprotein to facilitate RNA replication and antagonize the host innate immune response. The latter function involves reversing the post-translational modification of cellular proteins conjugated with either ubiquitin (Ub) or Ub-like interferon-stimulated gene product 15 (ISG15). Ub is known to be highly conserved among eukaryotes, but surprisingly, ISG15 is highly divergent among animals. The ramifications of this sequence divergence to the recognition of ISG15 by coronavirus PLPs at a structural and biochemical level are poorly understood. Therefore, the activity of PLPs from SARS-CoV, MERS-CoV, and mouse hepatitis virus was evaluated against seven ISG15s originating from an assortment of animal species susceptible, and not, to certain coronavirus infections. Excitingly, our kinetic, thermodynamic, and structural analysis revealed an array of different preferences among PLPs. Included in these studies is the first insight into a coronavirus PLP's interface with ISG15 via SARS-CoV PLpro in complex with the principle binding domain of human ISG15 (hISG15) and mouse ISG15s (mISG15s). The first X-ray structure of the full-length mISG15 protein is also reported and highlights a unique, twisted hinge region of ISG15 that is not conserved in hISG15, suggesting a potential role in differential recognition. Taken together, this new information provides a structural and biochemical understanding of the distinct specificities among coronavirus PLPs observed and addresses a critical gap of how PLPs can interact with ISG15s from a wide variety of species.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Vírus da Hepatite Murina/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Ubiquitinas/química , Ubiquitinas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Cristalografia por Raios X , Humanos , Cinética , Camundongos , Ligação Proteica , Conformação Proteica
6.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003490

RESUMO

Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.


Assuntos
Endorribonucleases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Vírus da Hepatite Murina/enzimologia , Diester Fosfórico Hidrolases/fisiologia , Torovirus/enzimologia , Proteínas não Estruturais Virais/fisiologia , Nucleotídeos de Adenina/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Sequência Conservada , Cricetinae , Ativação Enzimática , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligorribonucleotídeos/química , Diester Fosfórico Hidrolases/química , Proteínas não Estruturais Virais/química , Replicação Viral
7.
J Virol ; 90(16): 7415-7428, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279608

RESUMO

UNLABELLED: Positive-sense RNA viruses encode RNA-dependent RNA polymerases (RdRps) essential for genomic replication. With the exception of the large nidoviruses, such as coronaviruses (CoVs), RNA viruses lack proofreading and thus are dependent on RdRps to control nucleotide selectivity and fidelity. CoVs encode a proofreading exonuclease in nonstructural protein 14 (nsp14-ExoN), which confers a greater-than-10-fold increase in fidelity compared to other RNA viruses. It is unknown to what extent the CoV polymerase (nsp12-RdRp) participates in replication fidelity. We sought to determine whether homology modeling could identify putative determinants of nucleotide selectivity and fidelity in CoV RdRps. We modeled the CoV murine hepatitis virus (MHV) nsp12-RdRp structure and superimposed it on solved picornaviral RdRp structures. Fidelity-altering mutations previously identified in coxsackie virus B3 (CVB3) were mapped onto the nsp12-RdRp model structure and then engineered into the MHV genome with [nsp14-ExoN(+)] or without [nsp14-ExoN(-)] ExoN activity. Using this method, we identified two mutations conferring resistance to the mutagen 5-fluorouracil (5-FU): nsp12-M611F and nsp12-V553I. For nsp12-V553I, we also demonstrate resistance to the mutagen 5-azacytidine (5-AZC) and decreased accumulation of mutations. Resistance to 5-FU, and a decreased number of genomic mutations, was effectively masked by nsp14-ExoN proofreading activity. These results indicate that nsp12-RdRp likely functions in fidelity regulation and that, despite low sequence conservation, some determinants of RdRp nucleotide selectivity are conserved across RNA viruses. The results also indicate that, with regard to nucleotide selectivity, nsp14-ExoN is epistatic to nsp12-RdRp, consistent with its proposed role in a multiprotein replicase-proofreading complex. IMPORTANCE: RNA viruses have evolutionarily fine-tuned replication fidelity to balance requirements for genetic stability and diversity. Responsibility for replication fidelity in RNA viruses has been attributed to the RNA-dependent RNA polymerases, with mutations in RdRps for multiple RNA viruses shown to alter fidelity and attenuate virus replication and virulence. Coronaviruses (CoVs) are the only known RNA viruses to encode a proofreading exonuclease (nsp14-ExoN), as well as other replicase proteins involved in regulation of fidelity. This report shows that the CoV RdRp (nsp12) likely functions in replication fidelity; that residue determinants of CoV RdRp nucleotide selectivity map to similar structural regions of other, unrelated RNA viral polymerases; and that for CoVs, the proofreading activity of the nsp14-ExoN is epistatic to the function of the RdRp in fidelity.


Assuntos
Vírus da Hepatite Murina/enzimologia , Mutagênicos/metabolismo , Mutação , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Modelos Moleculares , Conformação Molecular , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Picornaviridae/enzimologia , RNA Polimerase Dependente de RNA/química , Genética Reversa
8.
PLoS Pathog ; 12(2): e1005473, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26919232

RESUMO

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite Murina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Mudança da Fase de Leitura do Gene Ribossômico , Perfilação da Expressão Gênica , Cinética , Mesocricetus , Camundongos , Vírus da Hepatite Murina/enzimologia , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Viral/química , Mapeamento por Restrição/métodos , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma , Proteínas Virais/química , Proteínas Virais/genética , Fenômenos Fisiológicos Virais
9.
J Gen Virol ; 97(4): 880-886, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26757803

RESUMO

Prior studies have demonstrated that the mouse hepatitis virus (MHV) A59 strain ns2 protein is a member of the 2H phosphoesterase family and exhibits 2',5'-phosphodiesterase (PDE) activity. During the IFN antiviral response, ns2 cleaves 2',5'-oligoadenylate (2-5A), a key mediator of RNase L activation, thereby subverting the activation of RNase L and evading host innate immunity. However, the mechanism of 2-5A cleavage by ns2 remains unclear. Here, we present the crystal structure of the MHV ns2 PDE domain and demonstrate a PDE fold similar to that of the cellular protein, a kinase anchoring protein 7 central domain (AKAP7(CD)) and rotavirus VP3 carboxy-terminal domain. The structure displays a pair of strictly conserved HxT/Sx motifs and forms a deep, positively charged catalytic groove with ß-sheets and an arginine-containing loop. These findings provide insight into the structural basis for 2-5A binding of MHV ns2.


Assuntos
Endorribonucleases/química , Vírus da Hepatite Murina/química , Diester Fosfórico Hidrolases/química , Proteínas não Estruturais Virais/química , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rotavirus/química , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
J Virol ; 89(9): 4907-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694594

RESUMO

UNLABELLED: Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE: Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.


Assuntos
Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/fisiologia , Peptídeo Hidrolases/metabolismo , Replicação Viral , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Análise Mutacional de DNA , Estabilidade Enzimática , Feminino , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/patogenicidade , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeo Hidrolases/química , Estrutura Terciária de Proteína , Temperatura
11.
J Virol ; 87(15): 8408-18, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23698313

RESUMO

Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2',5'-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types-neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I·C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Células Cultivadas , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/imunologia , Proteínas não Estruturais Virais/genética
12.
Virus Res ; 167(2): 247-58, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22617024

RESUMO

The purpose of this study was to compare the biochemical and biological properties of nonstructural protein (nsp) 15 among mouse hepatitis virus (MHV), severe acute respiratory syndrome coronavirus (SARS-CoV) and transmissible gastroenteritis virus (TGEV) in virus-infected and ectopically expressed cells. In virus-infected cells, MHV nsp15 distributed unevenly throughout the cytoplasm but predominantly in the perinuclear region. When expressed as N-terminal enhanced green fluorescence protein (EGFP) fusion, it predominantly formed speckles in the cytoplasm. In contrast, SARS-CoV and TGEV EGFP-nsp15s distributed smoothly in the whole cell and did not form speckles. Deletion mapping experiments identified two domains responsible for the speckle formation in MHV EGFP-nsp15: Domain I (aa101-150) and Domain III (aa301-374). Interestingly, Domain II (aa151-250) had an inhibitory effect on Domain III- but not on Domain I-mediated speckle formation. Expression of a small (35aa) sequence in Domain III alone was sufficient to form speckles for all 3 viral nsp15s. However, addition of surrounding sequences in Domain III abolished the speckle formation for TGEV nsp15 but not for MHV and SARS-CoV nsp15s. Further domain swapping experiments uncovered additional speckle-inducing and -suppressive elements in nsp15s of SARS-CoV and TGEV. Homotypic interaction involving Domain III of MHV nsp15 was further demonstrated biochemically. Moreover, the biological functions of the expressed nsp15s were assessed in MHV-infected cells. It was found that the effects of EGFP-nsp15s on MHV replication were both virus species- and nsp15 domain-dependent. Collectively these results thus underscore the differential biochemical and biological functions among the nsp15s of MHV, TGEV and SARS-CoV in host cells.


Assuntos
Vírus da Hepatite Murina/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Vírus da Gastroenterite Transmissível/enzimologia , Proteínas não Estruturais Virais/metabolismo , Animais , Células Cultivadas , Citoplasma/química , Análise Mutacional de DNA , Humanos , Camundongos , Vírus da Hepatite Murina/genética , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Deleção de Sequência , Vírus da Gastroenterite Transmissível/genética , Proteínas não Estruturais Virais/genética
13.
J Virol ; 86(9): 4801-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345451

RESUMO

Positive-strand RNA virus genomes are translated into polyproteins that are processed by viral proteases to yield functional intermediate and mature proteins. Coronaviruses (CoVs) carry genes that encode an nsp5 protease (also known as 3CLpro or Mpro) responsible for 11 maturation cleavages. The nsp5 structure contains two chymotrypsin-like domains (D1 and D2) and a unique domain (D3), and forms functional dimers. However, little is known of interactions or communication across the structure of the protease during nsp5 activity. Using reverse genetic mutagenesis of the CoV murine hepatitis virus (MHV) nsp5, we identified a new temperature-sensitive (ts) mutation in D2 of nsp5 (Ser133Ala) and confirmed a ts residue in D3 (Phe219Leu). Both D2-tsS133A and D3-tsF219L were impaired for viral replication and nsp5-mediated polyprotein processing at the nonpermissive temperature. Passage of tsS133A and tsF219L at the nonpermissive temperature resulted in emergence of multiple second-site suppressor mutations, singly and in combinations. Among the second-site mutations, a D2 His134Tyr change suppressed the ts phenotype of D2-tsS133A and D3-tsF219L, as well as the previously reported D2-tsV148A. Analysis of multiple CoV nsp5 structures, and alignment of nonredundant nsp5 primary sequences, demonstrated that ts and suppressor residues are not conserved across CoVs and are physically distant (>10 Å) from each other, from catalytic and substrate-binding residues, and from the nsp5 dimer interface. These findings demonstrate that long-distance communication pathways between multiple residues and domains of nsp5 play a significant role in nsp5 activity and viral replication, suggesting possible novel targets for non-active site inhibitors of nsp5.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Hepatite Murina/enzimologia , Mutação , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteases 3C de Coronavírus , Cricetinae , Cisteína Endopeptidases/metabolismo , Ativação Enzimática/genética , Ordem dos Genes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Vírus da Hepatite Murina/genética , Fenótipo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Replicação Viral/genética
14.
J Virol ; 86(8): 4294-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22301153

RESUMO

Coronaviruses encode an endoribonuclease, Nsp15, which has a poorly defined role in infection. Sequence analysis revealed a retinoblastoma protein-binding motif (LXCXE/D) in the majority of the Nsp15 of the severe acute respiratory syndrome coronavirus (SARS-CoV) and its orthologs in the alpha and beta coronaviruses. The endoribonuclease activity of the SARS-CoV Nsp15 (sNsp15) was stimulated by retinoblastoma protein (pRb) in vitro, and the two proteins can be coimmunoprecipitated from cellular extracts. Mutations in the pRb-binding motif rendered sNsp15 to be differentially modified by ubiquitin in cells, and cytotoxicity was observed upon its expression. Expression of the sNsp15 in cells resulted in an increased abundance of pRb in the cytoplasm, decreased overall levels of pRb, an increased proportion of cells in the S phase of the cell cycle, and an enhanced expression from a promoter normally repressed by pRb. The endoribonuclease activity of the mouse hepatitis virus (MHV) A59 Nsp15 was also increased by pRb in vitro, and an MHV with mutations in the LXCXE/D-motif, named vLC, exhibited a smaller plaque diameter and reduced the virus titer by ∼1 log. Overexpression of pRb delayed the viral protein production by wild-type MHV but not by vLC. This study reveals that pRb and its interaction with Nsp15 can affect coronavirus infection and adds coronaviruses to a small but growing family of RNA viruses that encode a protein to interact with pRb.


Assuntos
Endorribonucleases/metabolismo , Vírus da Hepatite Murina/enzimologia , Proteína do Retinoblastoma/metabolismo , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose/genética , Sítios de Ligação , Linhagem Celular , Infecções por Coronavirus/metabolismo , Cricetinae , Endorribonucleases/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Vírus da Hepatite Murina/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteína do Retinoblastoma/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
15.
PLoS One ; 6(2): e17192, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21364999

RESUMO

BACKGROUND: Coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus (SCoV) and mouse hepatitis virus A59 (MHV-A59) have evolved strategies to disable the innate immune system for productive replication and spread of infection. We have previously shown that papain-like protease domain 2 (PLP2), a catalytic domain of the nonstructural protein 3 (nsp3) of MHV-A59, encodes a deubiquitinase (DUB) and inactivates IFN regulatory factor 3 (IRF3) thereby the type I interferon (IFN) response. PRINCIPAL FINDINGS: Here we provide further evidence that PLP2 may also target TANK-binding kinase-1 (TBK1), the upstream kinase of IRF3 in the IFN signaling pathway. Overexpression experiments showed that PLP2 deubiquitinated TBK1 and reduced its kinase activity, hence inhibited IFN-ß reporter activity. Albeit promiscuous in deubiquitinating cellular proteins, PLP2 inactivated TBK1 and IFN-ß response in TNF receptor associated factor 3 (TRAF3) deficient cells, suggesting that targeting TBK1 would be sufficient for PLP2 to inhibit IRF3 activation. This notion was further supported by in vitro kinase assays, in which prior treatment of TBK1 with PLP2 inhibited its kinase activity to phosphorylate IRF3. Intriguing enough, results of PLP2 overexpression system and MHV-A59 infection system proved that PLP2 formed an inactive complex with TBK1 and IRF3 in the cytoplasm and the presence of PLP2 stabilized the hypo-phosphorylated IRF3-TBK1 complex in a dose-dependent manner. CONCLUSIONS: These results suggest that PLP2 not only inactivates TBK1, but also prevents IRF3 nuclear translocation hence inhibits IFN transcription activation. Identification of the conserved DUB activity of PLP2 in suppression of IFN signaling would provide a useful clue to the development of therapeutics against coronaviruses infection.


Assuntos
Interferon Tipo I/metabolismo , Vírus da Hepatite Murina/enzimologia , Papaína/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Animais , Células Cultivadas , Proteases Semelhantes à Papaína de Coronavírus , Interferon Tipo I/fisiologia , Camundongos , Vírus da Hepatite Murina/metabolismo , Papaína/genética , Papaína/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção , Ubiquitinação/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
J Virol ; 84(19): 10148-58, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668085

RESUMO

We report an RNA-negative, temperature-sensitive (ts) mutant of Murine hepatitis virus, Bristol ts31 (MHV-Brts31), that defines a new complementation group within the MHV replicase gene locus. MHV-Brts31 has near-normal levels of RNA synthesis at the permissive temperature of 33 degrees C but is unable to synthesize viral RNA when the infection is initiated and maintained at the nonpermissive temperature of 39.5 degrees C. Sequence analysis of MHV-Brts31 RNA indicated that a single G-to-A transition at codon 1307 in open reading frame 1a, which results in a replacement of methionine-475 with isoleucine in nonstructural protein 3 (nsp3), was responsible for the ts phenotype. This conclusion was confirmed using a vaccinia virus-based reverse genetics system to produce a recombinant virus, Bristol tsc31 (MHV-Brtsc31), which has the same RNA-negative ts phenotype and complementation profile as those of MHV-Brts31. The analysis of protein synthesis in virus-infected cells showed that, at the nonpermissive temperature, MHV-Brtsc31 was not able to proteolytically process either p150, the precursor polypeptide of the replicase nonstructural proteins nsp4 to nsp10, or the replicase polyprotein pp1ab to produce nsp12. The processing of replicase polyprotein pp1a in the region of nsp1 to nsp3 was not affected. Transmission electron microscopy showed that, compared to revertant virus, the number of double-membrane vesicles in MHV-Brts31-infected cells is reduced at the nonpermissive temperature. These results identify a new cistron in the MHV replicase gene locus and show that nsp3 has an essential role in the assembly of a functional MHV replication-transcription complex.


Assuntos
Genes Virais , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Teste de Complementação Genética , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo , Processamento de Proteína Pós-Traducional , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Temperatura , Proteínas Virais/metabolismo
17.
J Virol ; 83(8): 3743-53, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176619

RESUMO

The Murine hepatitis virus (MHV) strain A59 ns2 protein is a 30-kDa nonstructural protein that is expressed from a subgenomic mRNA in the cytoplasm of virus-infected cells. Its homologs are also encoded in other closely related group 2a coronaviruses and more distantly related toroviruses. Together, these proteins comprise a subset of a large superfamily of 2H phosphoesterase proteins that are distinguished by a pair of conserved His-x-Thr/Ser motifs encompassing catalytically important residues. We have used a vaccinia virus-based reverse genetic system to produce recombinant viruses encoding ns2 proteins with single-amino-acid substitutions in, or adjacent to, these conserved motifs, namely, inf-ns2 H46A, inf-ns2 S48A, inf-ns2-S120A, and inf-ns2-H126R. All of the mutant viruses replicate in mouse 17 clone 1 fibroblast cells and mouse embryonic cells to the same extent as the parental wild-type recombinant virus, inf-MHV-A59. However, compared to inf-MHV-A59, the inf-ns2 H46A and inf-ns2-H126R mutants are highly attenuated for replication in mouse liver following intrahepatic inoculation. Interestingly, none of the mutant viruses were attenuated for replication in mouse brain following intracranial inoculation. These results show that the ns2 protein of MHV-A59 has an important role in virus pathogenicity and that a substitution of the histidine residues of the MHV-A59 ns2 His-x-Thr/Ser motifs is critical for virus virulence in the liver but not in the brain. This novel phenotype suggests a strategy to investigate the function of the MHV-A59 ns2 protein involving the search for organ-specific proteins or RNAs that react differentially to wild-type and mutant ns2 proteins.


Assuntos
Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/patogenicidade , Diester Fosfórico Hidrolases/genética , Substituição de Aminoácidos/genética , Animais , Encéfalo/virologia , Células Cultivadas , Infecções por Coronavirus/virologia , Fibroblastos/virologia , Fígado/virologia , Camundongos , Vírus da Hepatite Murina/crescimento & desenvolvimento , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Diester Fosfórico Hidrolases/metabolismo
18.
J Virol ; 81(22): 12554-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17855548

RESUMO

Coronavirus replicase polyproteins are translated from the genomic positive-strand RNA and are proteolytically processed by three viral proteases to yield 16 mature nonstructural proteins (nsp1 to nsp16). nsp4 contains four predicted transmembrane-spanning regions (TM1, -2, -3, and -4), demonstrates characteristics of an integral membrane protein, and is thought to be essential for the formation and function of viral replication complexes on cellular membranes. To determine the requirement of nsp4 for murine hepatitis virus (MHV) infection in culture, engineered deletions and mutations in TMs and intervening soluble regions were analyzed for effects on virus recovery, growth, RNA synthesis, protein expression, and intracellular membrane modifications. In-frame partial or complete deletions of nsp4; deletions of TM1, -2, and -3; and alanine substitutions of multiple conserved, clustered, charged residues in nsp4 resulted in viruses that were nonrecoverable, viruses highly impaired in growth and RNA synthesis, and viruses that were nearly wild type in replication. The results indicate that nsp4 is required for MHV replication and that while putative TM1, -2, and -3 and specific charged residues may be essential for productive virus infection, putative TM4 and the carboxy-terminal amino acids K(398) through T(492) of nsp4 are dispensable. Together, the experiments identify important residues and regions for studies of nsp4 topology, function, and interactions.


Assuntos
Vírus da Hepatite Murina/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/enzimologia , Biologia Computacional , Cricetinae , Análise Mutacional de DNA , Deleção de Genes , Camundongos , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Mutação , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , Deleção de Sequência , Proteínas não Estruturais Virais/genética
19.
J Virol ; 81(22): 12135-44, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804504

RESUMO

Replication fidelity of RNA virus genomes is constrained by the opposing necessities of generating sufficient diversity for adaptation and maintaining genetic stability, but it is unclear how the largest viral RNA genomes have evolved and are maintained under these constraints. A coronavirus (CoV) nonstructural protein, nsp14, contains conserved active-site motifs of cellular exonucleases, including DNA proofreading enzymes, and the severe acute respiratory syndrome CoV (SARS-CoV) nsp14 has 3'-to-5' exoribonuclease (ExoN) activity in vitro. Here, we show that nsp14 ExoN remarkably increases replication fidelity of the CoV murine hepatitis virus (MHV). Replacement of conserved MHV ExoN active-site residues with alanines resulted in viable mutant viruses with growth and RNA synthesis defects that during passage accumulated 15-fold more mutations than wild-type virus without changes in growth fitness. The estimated mutation rate for ExoN mutants was similar to that reported for other RNA viruses, whereas that of wild-type MHV was less than the established rates for RNA viruses in general, suggesting that CoVs with intact ExoN replicate with unusually high fidelity. Our results indicate that nsp14 ExoN plays a critical role in prevention or repair of nucleotide incorporation errors during genome replication. The established mutants are unique tools to test the hypothesis that high replication fidelity is required for the evolution and stability of large RNA genomes.


Assuntos
Exorribonucleases/metabolismo , Vírus da Hepatite Murina/fisiologia , Mutagênese/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cricetinae , Exorribonucleases/genética , Genoma Viral , Camundongos , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Mutação , Proteínas não Estruturais Virais/genética
20.
J Virol ; 81(19): 10280-91, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17634238

RESUMO

Coronaviruses express open reading frame 1a (ORF1a) and ORF1b polyproteins from which 16 nonstructural proteins (nsp) are derived. The highly conserved region at the carboxy terminus of ORF1a is processed by the nsp5 proteinase (Mpro) into mature products, including nsp7, nsp8, nsp9, and nsp10, proteins with predicted or identified activities involved in RNA synthesis. Although continuous translation and proteolytic processing of ORF1ab by Mpro is required for replication, it is unknown whether specific cleavage events within the polyprotein are dispensable. We determined the requirement for the nsp7 to nsp10 proteins and their processing during murine hepatitis virus (MHV) replication. Through use of an MHV reverse genetics system, in-frame deletions of the coding sequences for nsp7 to nsp10, or ablation of their flanking Mpro cleavage sites, were made and the effects upon replication were determined. Viable viruses were characterized by analysis of Mpro processing, RNA transcription, and growth fitness. Deletion of any of the regions encoding nsp7 to nsp10 was lethal. Disruption of the cleavage sites was lethal with the exception of that of the nsp9-nsp10 site, which resulted in a mutant virus with attenuated replication. Passage of the attenuated nsp9-nsp10 cleavage mutant increased fitness to near-wild-type kinetics without reversion to a virus capable of processing nsp9-nsp10. We also confirmed the presence of a second cleavage site between nsp7 and nsp8. In order to determine whether a distinct function could be attributed to preprocessed forms of the polyprotein, including nsp7 to nsp10, the genes encoding nsp7 and nsp8 were rearranged. The mutant virus was not viable, suggesting that the uncleaved protein may be essential for replication or proteolytic processing.


Assuntos
Vírus da Hepatite Murina/fisiologia , Poliproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Animais , Células Cultivadas , Camundongos , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Mutação , Fases de Leitura Aberta , Poliproteínas/genética , RNA Polimerase Dependente de RNA/genética , Deleção de Sequência , Transcrição Gênica , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...